Electrochemical production of hydrogen coupled with the oxidation of arsenite.
نویسندگان
چکیده
The production of hydrogen accompanied by the simultaneous oxidation of arsenite (As(III)) was achieved using an electrochemical system that employed a BiOx-TiO2 semiconductor anode and a stainless steel (SS) cathode in the presence of sodium chloride (NaCl) electrolyte. The production of H2 was enhanced by the addition of As(III) during the course of water electrolysis. The synergistic effect of As(III) on H2 production can be explained in terms of (1) the scavenging of reactive chlorine species (RCS), which inhibit the production of H2 by competing with water molecules (or protons) for the electrons on the cathode, by As(III) and (2) the generation of protons, which are more favorably reduced on the cathode than water molecules, through the oxidation of As(III). The addition of 1.0 mM As(III) to the electrolyte at a constant cell voltage (E cell) of 3.0 V enhanced the production of H2 by 12% even though the cell current (I cell) was reduced by 5%. The net effect results in an increase in the energy efficiency (EE) for H2 production (ΔEE) by 17.5%. Furthermore, the value ΔEE, which depended on As(III) concentration, also depended on the applied E cell. For example, the ΔEE increased with increasing As(III) concentration in the micromolar range but decreased as a function of E cell. This is attributed to the fact that the reactions between RCS and As(III) are influenced by both RCS concentration depending on E cell and As(III) concentration in the solution. On the other hand, the ΔEE decreased with increasing As(III) concentration in the millimolar range due to the adsorption of As(V) generated from the oxidation of As(III) on the semiconductor anode. In comparison to the electrochemical oxidation of certain organic compounds (e.g., phenol, 4-chlorophenol, 2-chlorophenol, salicylic acid, catechol, maleic acid, oxalate, and urea), the ΔEE obtained during As(III) oxidation (17.5%) was higher than that observed during the oxidation of the above organic compounds (ΔEE = 3.0-15.3%) with the exception of phenol at 22.1%. The synergistic effect of As(III) on H2 production shows that an energetic byproduct can be produced during the remediation of a significant inorganic pollutant.
منابع مشابه
Electrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملElectrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells
In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...
متن کاملSimulation of Methane Partial Oxidation in Porous Media Reactor for Hydrogen Production
The enactment of strict laws on reducing pollution and controlling combustion has given rise to the necessity of considering a new approach to energy supply in the future. One such approach is the use of hydrogen as an alternative to fossil fuels. Hydrogen and synthesis gas are typically produced through the partial oxidation of methane in porous media. This process was theoretically simula...
متن کاملEFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملExperimental investigation of Methane Partial Oxidation in Porous Media for Hydrogen Production
One of the future technologies for energy supply in the electricity and automotive industries is the use of fuel cells. Hydrogen is the main source of fuel in fuel cells. Methane reforming through partial oxidation of methane is one of the methods of hydrogen production. In this paper, this process for the production of hydrogen gas, which is the energy source of these fuel cells, is examined n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2014